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1. Introduction

Instantons play a major role in the understanding of the non-perturbative properties of

QCD. The solution of the U(1)A problem, the mass of the η′ and the explanation of the

spontaneous chiral symmetry breaking in QCD furnish instances of issues where instantons

are the leading actors — see [1] and [2] and references therein. Two chief phenomena which

are at the heart of instanton physics are following. First, instantons interpolate in Euclidean

time between two classical vacuum states with winding numbers n and n + 1, respectively,

thus yielding the semi-classical contribution to the transition probability between these

two classical vacuum states. Secondly, in the presence of massless quarks, the instanton
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transition leads to compulsory quark-anti-quark pair creation or, alternatively, turns a left

handed quark into a right handed quark.

Instantons also occur in noncommutative U(N) Yang-Mills theories, in spite of the fact

that, even classically, they are not invariant under scale transformations. It all started with

the construction of instantons in noncommutative U(1) theory by the authors of ref. [3]

— see also ref. [4]. These instantons have no counterpart in ordinary space. Then instan-

tons in noncommutative U(2) theories were constructed [5 – 8], and thus was obtained the

noncommutative counterpart of the celebrated BPST instanton [9]. (Multi)-Instantons in

noncommutative U(N) gauge theories have also been constructed in refs. [10 – 15] and [16].

The physical effects of the noncommutative U(N) instantons have been analyzed in a

number of papers. We shall just mention that the zero modes of the Dirac operator in a

noncommutative instanton background have been studied in ref. [17] and that the quantum

corrections around such types of backgrounds have been worked out for N = 2 supersym-

metry in ref. [18].

Noncommutative QCD was constructed in ref. [19] as a part of the noncommutative

standard model — see also refs. [20] and [23] and see refs. [21, 22] for other approaches.

In the generalization of ordinary QCD of ref. [19], the noncommutative gauge field does

not take values in the Lie algebra of SU(3), but rather in its enveloping algebra. Actually,

the noncommutative fields are built from the ordinary fields with the help of the Seiberg-

Witten map [24]. Thus it was circumvented what appears to be a shortcoming of the

standard framework of noncommutative gauge theories, namely that it can only be applied

to U(N) groups. Indeed, in this standard framework — see ref. [25] for a good introduction

to the subject — the noncommutative gauge field unavoidably takes values in the Lie

algebra of U(N), or direct products of such groups [26]. Some phenomenological [27, 28]

and theoretical [29 – 31] properties of noncommutative gauge theories with SU(N) gauge

groups have been investigated so far, but, a lot of work remains to be done. In particular,

the study of the existence of instantons and, would they exist, the phenomena they give

rise to, is, up to the best of our knowledge, a completely unexplored territory. This is

in sharp contrast with the case of noncommutative U(N) theories. Note that in the case

at hand, the SU(N) theory is not included in the U(N) case, since the noncommutative

SU(N) gauge field does not take values in the Lie algebra of SU(N).

This paper is devoted — partially — to the study of the existence of field configurations

in noncommutative SU(3) Yang-Mills theory that generalize the ordinary instanton field.

We shall also analize the coupling between massless quarks of different chirality that these

configurations give rise to and compute the corresponding ’t Hooft vertices at first order

in the noncommutative parameters hθµν . hθµν define the noncommutative character of

space, for the coordinates no longer commute but satisfy [Xµ,Xν ] = i h θµν . h sets the

noncommutative scale. Unless otherwise stated, we shall assume that Euclidean time is

commutative — i.e., that θ4 i = 0, i = 1, 2 and 3, in some reference system —, thus, upon

Wick rotation the concept of evolution will be the ordinary one. Further, for this choice of

θµν , the Wick rotated action can be chosen to be at most quadratic in the first temporal

derivative of the dynamical variables at any order in the expansion in hθµν and, thus,

there is one conjugate momenta per ordinary field. This makes it possible to use simple
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Lagrangian and Hamiltonian methods to define the classical field theory and quantize it

afterwards by using elementary and standard recipes. If time were not commutative the

number of conjugate momenta will grow with the order of the expansion in h and then the

Hamiltonian formalism will have to be generalized in some way or another [32, 33]. This

generalization may affect the quantization process in some nontrivial way and deserves to

be analyzed separately, perhaps along the lines laid out in ref. [32].

The layout of this article is as follows. In section 2, we look for — and conclude that

there are none — solutions to the SU(N) noncommutative (anti)-self-duality equations

that are formal power series in hθµν , with θ4i = 0, i = 1, 2 and 3. Section 3 deals with the

construction of field configurations that go to the ordinary instanton as hθµν → 0 and that

render stationary, at first order in hθµν , the action of noncommutative SU(3) Yang-Mills

theory. These field configurations will be called first-order-in-θ-deformed instantons. In

section 4, we study the coupling between light left handed and right handed fermions that

the field configurations found in the previous section produce and work out the appropriate

’t Hooft vertices. We do this in this in theories with one, two and three light fermions.

The two- and three-light fermions cases are relevant in connection with noncommutative

QCD. In the last section, we summarize, draw conclusions and suggest how to carry on

with the program started in this paper to include corrections at second order in hθµν or

higher. The paper also includes five appendices. In appendix A, we consider an arbitrary

hθµν and seek for solutions to the SU(N) noncommutative (anti)-self-duality equations that

come as formal power series in hθµν . The classical vacua of non-commutative SU(N) that

are also formal power series in hθµν are found in appendix B, when time is commutative.

Appendix C is devoted to the construction at first order in hθµν of the zero modes of the

kinetic term of the quantum gauge field fluctuations in the background of a first-order-in-

θ-deformed instanton. We also compute the zero mode of the θ−deformed Dirac operator

in that very background. In appendix D, we shall show that, when θ4i = 0, i = 1, 2, 3,

no topologically nontrivial solutions can be found as power series in hθµν that solve the

equations of motion of noncommutative SU(3) Yang-Mills theory. Several formulae used

in the paper are collected in appendix E.

2. Noncommutative SU(N) instantons

A noncommutative SU(N) gauge field, Aµ[aν ], — see [20] — is a self-adjoint vector field that

takes values in the enveloping algebra of the Lie algebra of SU(N) and that is obtained from

a given ordinary SU(N) gauge field, aµ, by means of a formal series expansion in powers of

hθµν provided by the Seiberg-Witten map. As is well known, the Seiberg- Witten map is

not unique [34 – 36], so that we shall call standard Seiberg-Witten map the straightforward

generalization to SU(N) of the original expression introduced by Seiberg and Witten in

ref. [37]. The standard form of the Seiberg-Witten map reads

Aµ = aµ +

∞
∑

n=1

hn

n!

dn−1

dhn−1

[

dAµ

dh

]∣

∣

∣

∣

h=0

= aµ − h

4
θαβ{aα, ∂βaµ + fβµ} + O(h2θ2), (2.1)
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where
dAµ

dh
= −1

4
θαβ{Aα, ∂βAµ + Fβµ}?. (2.2)

fµν stands for the ordinary field strength. The symbol ? denotes the Moyal product of

functions, i.e., (f ? g)(x) = f(x) exp( i h
2 θαβ←−∂α

−→
∂β)g(x), and {f, g}? = (f ? g)(x) + (g ? f)(x).

From the previous Aµ, one constructs the noncommutative field strength, Fµν [aσ], as

follows:

Fµν [a] = ∂µAν − ∂νAµ − i[Aµ, Aν ]? = fµν +
∞
∑

n=1

hn

n!

dn−1

dhn−1

[

dFµν

dh

]∣

∣

∣

∣

h=0

= fµν +
h

2
θαβ{fµα, fνβ} −

h

4
θαβ{aα, (∂β + Dβ)fµν} + O(h2θ2). (2.3)

Here, [Aµ, Aν ]? = Aµ ? Aν − Aν ? Aµ and

dFµν

dh
=

1

2
θαβ{Fµα, Fνβ}? −

1

4
θαβ{Aα, (∂β + Dβ)Fµν}?. (2.4)

The action of a noncommutative SU(N) Yang-Mills theory is given by

SNCYM =
1

2g2

∫

d4x TrFµν ? Fµν

=
1

g2

∫

d4x Tr

[

1

2
fµνfµν − h

4
θαβfαβfµνfµν + hθαβ fµαfνβfµν

]

+ O(h2θ2). (2.5)

We shall take aµ to be in the fundamental representation of SU(N). We shall only consider

ordinary gauge fields, aµ, such that each term in the formal expansion on the r.h.s. of

eq. (2.5) is finite. Thus, we shall impose the following boundary condition on aµ:

aµ(x) → ig(x)∂µg†(x) + O
( 1

| x |2
)

as | x |→ ∞. (2.6)

g(x) stands for an ordinary SU(N) gauge transformation.

It is then postulated that SNCYM governs the dynamics of our SU(N) field theory on

the four-dimensional noncommutative Euclidean space defined by [X̂µ, X̂ν ] = i h θµν , with

θi4 = 0, ∀i.

Let us introduce the noncommutative dual field strength, F̃µν(x), and its ordinary

counterpart:

F̃µν =
1

2
εµνρσ Fρσ, f̃µν =

1

2
εµνρσ fρσ.

Then, a noncommutative SU(N) field Aµ[aσ] has Pontrjagin index n if the following equa-

tion holds

n =
1

16π2

∫

d4x Tr (Fµν [aσ ] ? F̃µν [aσ] )(x). (2.7)

It can be shown [31] that for ordinary gauge fields satisfying the boundary conditions in

eq. (2.6), the Pontrjagin index of Aµ[aσ] is equal to the Pontrjagin index of the ordinary

field, aσ, that defines the former as in eq. (2.1). Indeed,
∫

d4x Tr (Fµν [aσ] ? F̃µν [aσ ] )(x) =

∫

d4x Tr fµν(x)f̃µν(x). (2.8)
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We shall say that Aµ[aσ], defined by a given ordinary field aµ as in eq. (2.1), is a

noncommutative SU(N) instanton if it has Pontrjagin index — see eq. (2.7) — equal to

one and it is a solution to the self-duality equation:

Fµν [aσ] = F̃µν [aσ ]. (2.9)

It is not difficult to show that every noncommutative SU(N) instanton renders stationary

the action in eq. (2.5). Indeed,

SNCYM = ∓ 1

2g2

∫

d4x Tr Fµν ? F̃µν +
1

4g2

∫

d4x Tr[(Fµν ± F̃µν) ? (Fµν ± F̃µν)]. (2.10)

Both sides of the self-duality equation — eq. (2.9) — are defined as formal power

series in hθµν — see eq. (2.3) — around the appropriate ordinary object: fµν or f̃µν .

Hence, one would like to find solutions to this equation that are formal series expansions

in powers of hθµν around topologically nontrivial solutions to the ordinary self-duality

equation fµν = f̃µν . We shall show below that no such solutions exist if θi4 = 0 in a given

reference system.

Let aµ, a solution to eq. (2.9), be given by the following formal power series in hθµν :

aµ[h](x) = a(0)
µ (x) +

∞
∑

k=1

hk a(k)
µ (x), (2.11)

where a
(k)
µ (x) is a homogeneous polynomial in θµν of degree k whose coefficients are func-

tions of x that take values in the Lie algebra of SU(N). Then, using the expression for

Fµν [aσ] on the second line of eq. (2.3), one concludes that the following equations hold

f (0)
µν = f̃ (0)

µν , (2.12)

D(0)
µ a(1)

ν − D(0)
ν a(1)

µ +
1

2
θαβ {f (0)

µα , f
(0)
νβ } =

1

2
εµνρσ

(

D(0)
ρ a(1)

σ − D(0)
ρ a(1)

σ +
1

2
θαβ{f (0)

ρα , f
(0)
σβ }

)

,

where D
(0)
µ a

(1)
ν = ∂µa

(1)
ν −i[a

(0)
µ , a

(1)
ν ]. Since a

(1)
ν (x) takes values in the Lie algebra of SU(N),

not U(N), the trace over the SU(N) generators of both sides of the second equality in the

previous equation yields

θαβ f (0) a
µα f

(0) a
νβ =

1

2
θαβ εµνρσf (0) a

ρα f
(0) a
σβ . (2.13)

f
(0) a
µν stand for the components of f

(0)
µν in terms of the generators, T a, of SU(N). Now, since

θi4 = 0, we can always choose θ12 = θ and θ21 = −θ as only non-vanishing components

of θµν . For this θµν it is not difficult to show that the set of equations constituted by the

first equality in eq. (2.12) and the identity in eq. (2.13) is equivalent to the following set

of equations:

f
(0) a
12 = f

(0) a
34 , f

(0) a
13 = −f

(0) a
24 , f

(0) a
14 = f

(0) a
23 ,

∑

a

(f
(0) a
12 )2 + (f

(0) a
13 )2 + (f

(0) a
14 )2 = 0. (2.14)
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From this set of equations one readily concludes that a
(0)
µ has vanishing field strength, so

that it is gauge equivalent to the vanishing gauge field.

We have shown so far that when the standard Seiberg-Witten map — defined in

eqs. (2.1) and (2.2) — is employed to define the noncommutative field strength Fµν , the

self-duality equation — eq. (2.9) — has no solution of the type displayed in eq. (2.11). We

shall show next that this state of affairs remains unaltered for the most general type of

Seiberg-Witten map. At first order in hθµν , the most general expression for the Seiberg-

Witten map reads

Aµ = aµ − h

4
θαβ{aα, ∂βaµ + fβµ} + κ1 hθαβ Dµfαβ + κ2 hθαβ Dµ[aα, aβ ]

+κ3 hθ β
µ Dνfνβ + O(h2θ2), (2.15)

where κi, i = 1, 2, 3 are arbitrary real numbers. The noncommutative field strength for the

previous noncommutative gauge field is given by

Fµν = fµν +
h

2
θαβ{fµα, fνβ} −

h

4
θαβ{aα, (∂β + Dβ)fµν} − iκ1 hθαβ[fµν , fαβ ]

−iκ2 hθαβ[fµν , [aα, aβ ]] − κ3 h
(

θ β
µ DνD

ρfρβ − θ β
ν DµDρfρβ

)

+ O(h2θ2).

Substituting this expression in both sides of eq. (2.9), one concludes that eq. (2.13) is not

modified by the new terms in the previous Fµν . Hence, no solutions to the noncommutative

self-duality equation can be found by using formal powers series in hθµν around ordinary

fields with non-vanishing instanton number.

It is clear that the result we have obtained for the self-duality equation also carries

over to the anti-self-duality equation:

Fµν = −F̃µν .

The reader may wonder what would the situation be had we assumed an arbitrary θµν .

In appendix A we show that the self-duality equation defined by the standard Seiberg-

Witten map has topologically nontrivial solutions of the type in eq. (2.11) if, and only if,

θµν is self-dual: θµν = 1
2εµνρσθρσ. Actually, these solutions are the ordinary gauge field

configurations that are self-dual. Analogously, the anti-self-duality equation has solutions

of the type in eq. (2.11) with non-vanishing Pontrjagin number if, and only if, θµν is anti-

self-dual: θµν = −1
2εµνρσθρσ. These solutions are ordinary field configurations that are anti-

self-dual. In other words, if θµν is self-dual, the standard Seiberg-Witten map in eq. (2.1)

maps ordinary (multi-)instantons into noncommutative (multi-)instantons and if θµν is

anti-selfdual, the standard Seiberg-Witten map maps ordinary (multi-)anti-instantons into

noncommutative (multi-)anti-instantons.

3. First-order-in-θ-deformed instantons

In this section we shall look for ordinary field configurations, aµ[h](x), that render station-

ary the action of Euclidean noncommutative SU(3) Yang-Mills theory up to first order in

hθµν and that admit a formal series expansion in powers of hθµν . We shall further assume
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that these field configurations have a smooth dependence on the space coordinates, that

they satisfy the boundary conditions in eq. (2.6) and that they go to the ordinary instanton

as h → 0.

From eq. (2.5), one derives the following equation of motion up to first order in hθµν :

Tr T a

[

Dµfµν + hθαβ

{

fµβ,−Dαfνµ +
1

2
Dνfαµ

}]

= 0 + O(h2θ2). (3.1)

Now, any ordinary SU(3) instanton, aoinst
µ , has the form

aoinst
µ (x) = UaBPST

µ (x)U †,

where U is an arbitrary rigid SU(3) transformation and aBPST
µ (x) denotes the upper-left-

hand corner embedding in SU(3) of the ordinary SU(2) instanton, which can be written as

aBPST
µ (x) = ηaµν

(x − x0)ν
(x − x0)2 + ρ2

T a (3.2)

in the regular gauge. T a, a = 1, 2, 3 denote the upper-left-hand corner embedding of

the SU(2) generators into the SU(3) generators and ηaµν stands for the self-dual ’t Hooft

symbols [38].

Since eq. (3.1) is invariant under SU(3) transformations, we shall find first a solution

to it of the form

aµ[h] = aBPST
µ + hbµ + O(h2θ2). (3.3)

Then, we shall apply to this solution an arbitrary rigid SU(3) transformation. This type

of solutions will be called first-order-in-θ-deformed instanton. bµ in eq. (3.3) is an SU(3)

Lie-algebra-valued smooth vector field which is linear in θµν and vanishes rapidly enough

at infinity.

Let us substitute the previous aµ[h] in eq. (3.1) and discard any contribution of order

h2θ2. Of course, the order h0 contribution thus obtained is satisfied by construction:

DBPST
µ fBPST

µν = 0. The order hθµν contribution yields a non-homogeneous equation for bµ:

−iTr T a[bµ, fBPST
µν ] + Tr T a[DBPST

µ DBPST
µ bν − DBPST

µ DBPST
ν bµ]

=
1

2
Tr T aθαβ{fBPST

µβ ,DBPST
α fBPST

νµ + DBPST
µ fBPST

να }. (3.4)

The action of [T a, ], a ∈ {1, 2, 3} over the generators of SU(3) defines four irreducible repre-

sentations of SU(2): a spin one representation acting on the linear span of {T 1, T 2, T 3}, two

spin 1/2 representations acting on the linear span of {T 4, T 5, T 6, T 7} and a singlet acting

on T 8. On the other hand, if a, b ∈ {1, 2, 3}, we have {T a, T b} = 1
3δabII+dabcT

c|a,b∈{1,2,3} =
1
3δabII + 1√

3
δabT 8. This last identity implies that the r.h.s. of eq. (3.4) is non-zero only for

a = 8. Let us express bν as

bν = b(1...7)
ν + b8

νT 8, b(1...7)
ν =

7
∑

c=1

bc
νT

c. (3.5)
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Then, taking account that the action of [T a, ], a ∈ {1, 2, 3}, does not mix the irreducible

representations mentioned above, one concludes that the equation of motion for b
(1...7)
ν

decouples from that of b8
ν . For b

(1...7)
ν the equation of motion reads

(DBPST
µ (DBPST

µ b(1...7)
ν − DBPST

ν b(1...7)
µ ) − i[b(1...7)

µ , fBPST
µν ])a = 0, a ∈ 1, . . . , 7, (3.6)

whereas for b8
ν , we have the following non-homogeneous equation:

(¤ δµν − ∂µ∂ν) b8
ν =

∑

a

θαβ

2
√

3
[fBPST a

µβ (DBPST
α fBPST

νµ + DBPST
µ fBPST

να )a]. (3.7)

Let us first solve this second equation. The most most general solution to eq. (3.7) is

of the form b8
µ = b

8 (hom)
µ + b

8 (part)
µ , b

8 (part)
µ being a particular solution to it and b

8 (hom)
µ

denoting the most general solution to the corresponding homogeneous equation

(¤ δµν − ∂µ∂ν) b8 (hom)
ν = 0.

Any solution to the latter equation which is smooth and vanishes at infinity reads b
8 (hom)
µ =

∂µφ, where φ is an appropriate function. Recalling that T 8 commutes with T a, a ∈ {1, 2, 3},
one concludes that this b

8 (hom)
µ can always be generated by applying to aµ[h] in eq. (3.3)

the following gauge transformation: g(x) = eihφ(x)T 8
. We are thus left with the problem of

finding a particular solution, b
8 (part)
µ , to eq. (3.7).

Let us assume that b
8 (part)
µ satisfies the transversality condition ∂µb

8 (part)
µ = 0 and has

the following form:

b8 (part)
µ = θµν(x − x0)νf [(x − x0)

2] − θ̃µν(x − x0)νg[(x − x0)
2], θ̃µν =

1

2
εµνρσθρσ, (3.8)

where x0 is the centre of the ordinary BPST instanton. Then, eq. (3.7) boils down to the

following equation to be satisfied by f [(x − x0)
2] and g[(x − x0)

2]:

3y′ + (x − x0)
2y′′ = − 48ρ4

√
3[(x − x0)2 + ρ2]5

, y = f, g.

A solution to this equation that is smooth and vanishes at infinity is given by

y(x) = f [(x − x0)
2] = g[(x − x0)

2] =
2√
3

r2 + 3ρ2

(r2 + ρ2)3
,

where r = (x − x0)
2. Substituting the previous result in eq. (3.8), one finally gets that,

modulo gauge transformations, the solution, b8
µ, to eq. (3.7) that is smooth and vanishes

at infinity reads

b8
µ = b8 (part)

µ =
2√
3

(θµν(x − x0)ν − θ̃µν(x − x0)ν)
r2 + 3ρ2

(r2 + ρ2)3
. (3.9)

Again, r2 = (x − x0)
2.
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Let us now solve eq. (3.6). Using the fact that fBPST
µν = f̃BPST

µν and the relation [fµν , ] =

i[Dµ,Dν ], this equation can be turned into the following equality:

(

DBPST
µ

{

[DBPST
µ b(1...7)

ν − DBPST
ν b(1...7)

µ ] − 1

2
εµνρσ [DBPST

ρ b(1...7)
σ − DBPST

σ b(1...7)
ρ ]

})a

= 0,

a ∈ 1, . . . , 7. (3.10)

We shall show next that any smooth b
(1...7)
µ that vanishes at infinity is a solution to the

previous equation if, and only if, it solves the following equality:

[DBPST
µ b(1...7)

ν − DBPST
ν b(1...7)

µ ] − 1

2
εµνρσ[DBPST

ρ b(1...7)
σ − DBPST

σ b(1...7)
ρ ] = 0. (3.11)

Let Ωµν denote the left hand side of the previous equation. Then eq. (3.10) reads

DBPST
µ Ωµν = 0. (3.12)

Since Ωµν is an anti-symmetric and anti-self-dual object, it has the following representa-

tion in terms of the symmetric spinorial object Ωαβ: Ωµν = i(σµν)αβ Ωαβ, where σµν =

− 1
4i(σµσ̄ν − σν σ̄µ) with σµ = (~σ, i) and σ̄µ = (−~σ, i). In terms of Ωαβ, eq. (3.12) reads

tr
(

σνD
BPST
µ σ̄µΩ>)

= 0,

where tr stands for the trace over the spinor indices and Ω> is the transpose of Ω with

regard to the latter indices. Since {σν} is an orthogonal basis of the 2 × 2 matrices, the

previous equation is equivalent to

DBPST
µ σ̄µΩ> = 0.

Applying DBPST
ν σν to this equation, one concludes that

(DBPST)2 Ω> = 0.

Indeed, just take into account that σµσ̄ν = −δµν − 2iσµν and that σµνf
BPST
µν = 0. The

latter equality is a consequence of σµν being anti-self-dual and fBPST
µν being self-dual. Now,

(DBPST)2 is a positive definite operator, so that it has no normalizable non-vanishing eigen-

vectors with zero eigenvalue — see [39]. Hence,

Ωαβ = 0.

Recalling that Ωµν = i(σµν)αβ Ωαβ, we conclude that Ωµν(x) — smooth anti-symmetric

anti-self-dual object that vanishes at infinity — satisfies eq. (3.12) if, only if, Ωµν(x) = 0.

We have thus shown that solving eq. (3.10) is equivalent to solving eq. (3.11) for smooth

functions that vanish at infinity rapidly enough. Now, eq. (3.11) is the equation for the

zero modes of the ordinary SU(3) instanton [40]. Hence, the b
(1...7)
ν we are looking for

are linear combinations of those zero modes with coefficients that depend linearly on θµν ,

and can thus be obtained by deforming infinitesimally the collective coordinates of a given

SU(3) ordinary instanton. Since this deformation yields another SU(3) instanton, we shall
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set, without loss of generality, b
(1...7)
ν to zero. Substituting both this result and eq. (3.9)

in eq. (3.5), and the result so obtained, in turn, in eq. (3.3), one gets the most general

first-order-in-θ-deformed instanton, aµ[h](gen), in the regular gauge:

aµ[h](gen)(x) = Uaµ[h](x)U †. (3.13)

Here, U is an arbitrary rigid SU(3) transformation that does not leave aµ[h] invariant and

aµ[h] is given by

aµ[h] = aBPST
µ + hT 8 2√

3
[θµν − θ̃µν ](x − x0)ν

r2 + 3ρ2

(r2 + ρ2)3
, (3.14)

where aBPST
µ is defined in eq. (3.2) and r2 = (x − x0)

2.

It can be shown that aµ[h] has instanton number equal to 1 and that its contribution

to the noncommutative Yang-Mills action in eq. (2.10) reads

SNCYM =
8π2

g2
+ O(h2θ2).

Hence, at the order we are working — first order in hθµν — aµ[h] gives no correction to

the famous value — 8π2

g2 — of the corresponding ordinary theory.

From eq. (3.13), one learns that, at first order in hθµν , the moduli space of non-

commutative SU(3) Yang-Mills theory has dimension 12 for the k = 1 instanton sec-

tor. Indeed, as in the ordinary case, there are 12 collective coordinates that parametrise

aµ[h]gen(x) in eq. (3.13): ρ, xµ
0 and the seven angles of the coset space SU(3)/U(1).

In the next section and in appendix C, we shall use our generic first-order-in-θ-deformed

instanton in the singular gauge, which we shall denote by a
(gsing)
µ . a

(gsing)
µ is given by

a(gsing)
µ (x) = Uaµ(x)(sing)U †,

aµ(x)(sing)(x) = ηaµν
ρ2 (x − x0)ν

(x − x0)2[(x − x0)2 + ρ2]
τa

+
2h√

3
(θ − θ̃)µα(x − x0)α

(x − x0)
2 + 3ρ2

((x − x0)2 + ρ2)3
T 8. (3.15)

τa, a = 1, 2 and 3, stand for the upper-left-hand corner embedding of the SU(2) generators

in the generators of SU(3), both sets of generators being in their fundamental representa-

tions. aµ(x)(sing)(x) is obtained by applying to aµ[h](x) in eq. (3.14) the following SU(3)

gauge transformation g(x) =
iτ+

µ (x−x0)µ√
(x−x0)2

, where τ+
µ = (−→τ ,−i) and −→τ = (τ1, τ2, τ3).

We shall close this section by making the connection between the first-order-in-θ-

deformed instanton in eq. (3.14) and the classical vacua of noncommutative SU(3) Yang-

Mills theory. In ordinary SU(3) Yang-Mills theory the instanton interpolates — along

Euclidean time — between a classical vacuum in the distant past that has winding number

n and and a classical vacuum in the distant future with winding number equal to n + 1.

We shall see below that the same type of phenomenon occurs when our first-order-in-θ-

deformed instanton is at work. Since the phenomenon in question is most easily exhibited

in the Euclidean temporal gauge, we shall perform a gauge transformation so that our
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first-order-in-θ-deformed instanton satisfies the gauge condition a4[h] = 0. Our first-order-

in-θ-deformed instanton in the temporal gauge, a4[h] = 0, reads thus

ai[h]temporal(~x, τ) = g(~x, τ)ai[h](x)g(~x, τ)† + ig(~x, τ)∂ig(~x, τ)†, i = 1, 2, 3,

where x = (~x, τ), ai[h](x) is given by the r.h.s of eq. (3.14) and

g(~x, τ) =
(

ei
R τ

−∞
a4[h](~x,t) dt)g−(~x).

a4[h](~x, t) is defined by the r.h.s. of eq. (3.14) and g−(~x)ε SU(3) is such that g−(| ~x |→
∞) = 1. We see that ai[h]temporal(τ = −∞, ~x) = ig−(~x)∂ig−(~x)† and that ai[h]temporal(τ =

+∞, ~x) = ig+(~x)∂ig+(~x)†, with

g+(~x) = exp

[ −iπ~x~σ
√

~x2 + ρ2

]

exp[−iπφ8(~x)T 8] g−(~x), φ8(~x) = h
2√
3

θ̃0ixi
2~x2 + 5ρ2

(~x2 + ρ2)5/2
.

Now, it can be shown — see appendix B — that, for commutative time and in the temporal

gauge, all classical vacua, ai(~x)[h], of the noncommutative Yang-Mills theory that admit

a formal series expansion in powers of hθµν are of the form ai(~x)[h] = ig(~x)∂ig(~x)† —

g(~x)ε SU(3). Now, if a−i (~x) has winding number equal to n, a+
i (~x) has winding number

equal to n + 1: notice that the famous hedgehog matrix occurs in the definition of g+(~x)

and that exp(−iπφ8(~x)T 8) has vanishing winding number. We have thus shown that for

noncommutative SU(N) Yang-Mills theory, when time is commutative, our first-order-in-

θ-deformed instanton field connects along Euclidean time a classical vacuum in the distant

past with a classical vacuum in the distant future, the latter having a winding number

which is one unit greater than the former’s. This transition cannot be accomplished by

continuous evolution along the classical trajectories — i.e., solutions of the equations of

motion on noncommutative Minkowski space-time — since it involves a change of the

winding number. The phenomenon, as in ordinary Minkowski space-time, is a genuine

quantum effect: the transition is realised by tunnelling between the two vacua. We shall

analyze this tunnel effect in the next section.

4. Vacuum to vacuum transition and ‘t Hooft vertices

For Euclidean signature and at first order in hθµν , the action of non-commutative SU(3)

gauge theory with nf Dirac fermions is obtained by adding to SNCYM in eq. (2.5) the

fermionic action SF , which is given by:

SF = −
nf
∑

f=1

∫

d4xψf [K[aµ] + imf ]ψf . (4.1)

Here, K denotes the following θ-deformation of the ordinary Dirac operator iD/ [aµ]:

K[aµ] = iD/ [aµ] − ih

2
θαβγρfραDβ[aµ] +

ih

8
θαβγµ(Dµfαβ)[aµ]. (4.2)

This operator has — at least in perturbation theory in hθµν — a discrete spectrum for

gauge field configurations such as a
(gsing)
µ in eq. (3.15). See ref. [41] for further details.
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Let us denote by ãa
µ the quantum fluctuations around the the first-order-in-θ-deformed

instanton in the singular gauge, a
(gsing)
µ : aa

µ = a
a (gsing)
µ + ãa

µ. Then, in the first-order-in-θ-

deformed instanton transition, the vacuum to vacuum amplitude for the noncommutative

gauge theory with action S = SNCYM+SF is given, at one-loop level, by the following path

integral in the background-field gauge:

〈vac, n = 1|vac, n = 0〉

= e
− 8π2

g2

∫

dγ J(γ)

∫

dãa
µ

∫

dc̄a dca

∫

∏

f

dψf dψf

e
− 1

2

R

d4x ãa
µMab

µν [a
(gsing)
ρ ] ãb

ν+
R

d4x c̄aMab
gh

[a
(gsing)
µ ] ca+

Pnf
f=1

R

d4x ψf

h

K[a
(gsing)
µ ]+imf

i

ψf

= e
− 8π2

g2

∫

dγ J(γ)
(

det′
(

Mab
µν [a(gsing)

ρ ]
)

)−1/2
det

(

−Mab
gh[a(gsing)

µ ]
)

×
nf
∏

f=1

det
(

−K[a(gsing)
µ ] − imf

)

. (4.3)

Let us spell out now what the new symbols in the previous identity stand for. |vac, n = 0〉
and |vac, n = 1〉 denote vacua corresponding, respectively, to gauge field configurations

with winding number n = 0 and n = 1, these vacua being connected by our first-order-

in-θ-deformed instanton. γ denotes the collective coordinates of a
(gsing)
µ , namely: its size

ρ, its center x0 and its orientation — given by U , a rigid SU(3) transformation — in the

Lie algebra of SU(3). J(γ) is the collective coordinates Jacobian, which is computed, in

appendix C, from the zero modes of the operator Mab
µν [a

(gsing)
ρ ] defined below. The fields

ca and c̄a are the ghost fields introduced in the gauge-fixing procedure. The operators

Mab
µν [a

(gsing)
ρ ] and Mab

gh[a
(gsing)
µ ] are defined by the following identities:

Mab
µν [a(gsing)

σ ] =
δ2SNCYM

δaa
µδab

ν

|
aa

σ=a
a (gsing)
σ

+ Dac
µ [a(gsing)

σ ]Dcb
ν [a(gsing)

σ ],

Mab
gh[a(gsing)

σ ] = −
(

D2[a(gsing)
σ ]

)ab
. (4.4)

Here, Dab
µ [a

(gsing)
ρ ] = ∂µδab − fabca

c (gsing)
µ (x) and SNCYM is given in eq. (2.5). Let us finally

note that det′Mab
µν [a

(gsing)
ρ ] indicates that the zero modes of Mab

µν [a
(gsing)
ρ ] — see appendix C

— are to be left out when computing the determinant.

Now, as shown in appendix C, K[a
(gsing)
µ ] has a zero mode, at least at first order in

hθµν . Hence,

det
(

−K[a(gsing)
µ ] − imf

)

= −imf

∏

λ>0

(−λ2 − m2
f ), (4.5)

where λ denotes a generic positive eigenvalue of K[a
(gsing)
µ ]. To obtain eq. (4.5), we have

taken into account that the non-zero eigenvalues of K[a
(gsing)
µ ] come in pairs (λ,−λ). The

spectrum of K[a
(gsing)
µ ] is discrete, at least in the perturbative expansion in hθµν , due to

the fast fall-off of a
(gsing)
µ at infinity.

That the vacuum to vacuum amplitude in eq. (4.3) vanishes, or nearly vanishes, when

massless, or nearly massless, quarks couple to the first-order-in-θ-deformed instanton can
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be seen as a consequence of the U(1)A anomaly. Indeed, using the results in refs. [31, 41],

one concludes that in the first-order-in-θ-deformed instanton transition the chiral charge

associated to each massless flavour, f , changes compulsorily by two units: the first-order-in-

θ-deformed instanton turns a left handed quark into a right handed quark. This selection

rule would be broken by a non-zero 〈vac, n = 1|vac, n = 0〉. Since the first-order-in-θ-

deformed instanton turns a left-handed quark of massless flavour into a right-handed quark

with the same flavour, to obtain non-zero amplitudes one must insert enough pairs of quark-

anti-quark fields between |vac, n = 0〉 and 〈vac, n = 1|. Indeed, the quark propagator of

the flavour f in the first-order-in-θ-deformed instanton reads

〈ψf (x)ψ(y)f 〉(θdefinst) = −ψ0(x)ψ0(y)†

imf
−

∑

λ6=0

ψλ(x)ψ†
λ(y)

λ + imf
, (4.6)

where ψ0(x) stands for the zero-mode of K[a
(gsing)
µ ] worked out in appendix C and ψλ(x)

denotes generically the remaining eigenfunctions of this operator. Suppose now that the

masses of the nf quark flavours are taken to zero. Then, in this chiral limit, the Green

function 〈∏nf

f=1 ψf (x)ψ(y)f 〉(θdefinst) has a non-vanishing value, for the pole at mf = 0 of

the propagator in eq. (4.6) cancels the linear contribution in mf to the determinant in

eq. (4.5).

As in the ordinary case [38], the coupling between left-handed and right-handed mass-

less quarks through the first-order-in-θ-deformed instanton can be mimicked by using an

effective Lagrangian. This coupling does not occur at any order in the perturbative expan-

sion in powers of the coupling constant and the effective Lagrangian, Leff =
∑nf

n=0 L2n,

that simulates it is a sum of non-local interactions — called ’t Hooft vertices —, each

involving 2n fermions. In these non-local interactions quarks are emitted or absorbed

in the zero-mode wave function ψ0(x). The contribution L2n matches, as mf → 0 —

f = 1, . . . , nf —, the leading contribution to the amputated Green function obtained from

〈∏n
f ′=1 ψf ′(xf ′)ψ(yf ′)f ′〉(θdefinst). The amputation is to be carried out with the Dirac free

propagator, and {ψf ′(x)} stands for any set of n — with n ≤ nf — fermion fields. Now, it

is further assumed that the previous Green function is normalized to the vacuum to vacuum

amplitude in the perturbation theory background aµ = 0. Below we shall work out this ef-

fective Lagrangian for one, two and three nearly massless flavours — i.e., nf = 1, 2 and 3 —

to obtain the first order in θ corrections to the ordinary results obtained in refs. [43, 44, 2].

4.1 One light flavour

In this case we need to compute the leading contribution as, say, m1 = m → 0, to 〈vac, n =

1|vac, n = 0〉/〈vac, n = 0|vac, n = 0〉 and 〈ψ(x)ψ†(y)〉(θdefinst)/〈vac, n = 0|vac, n = 0〉.
ψ(x) denotes the field of the light quark. It turns out that the contribution to 〈vac, n =

1|vac, n = 0〉/〈vac, n = 0|vac, n = 0〉 which is linear in θµν vanishes since it must be

proportional to θµνgµν , gµν being the space-time metric. Hence,

〈vac, n = 1|vac, n = 0〉(θdefinst)

〈vac, n = 0|vac, n = 0〉 ≈

∫

dρ d4x0

ρ5
d
(nf =1)
0 (ρ)mρ,
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where d
(nf =1)
0 (ρ) is the ordinary “reduced” instanton density [45]:

d
(nf )
0 (ρ) = C(nf )

(

8π2

g2(ρ)

)6

e
−
(

8π2

g2(ρ)

)

.

Cnf
is constant which depends on the number of light flavours and the regularization

scheme.

Unlike 〈vac, n = 1|vac, n = 0〉/〈vac, n = 0|vac, n = 0〉, 〈ψ(x)ψ(y)〉(θdefinst)/〈vac, n =

0|vac, n = 0〉 receives contributions which are linear in θµν . Indeed, mρ ¿ 1 leads to

〈ψ(x)ψ†(y)〉(θdefinst)

〈vac, n = 0|vac, n = 0〉

≈
∫

dρd4x0dU

ρ5
d
(nf =1)
0 (ρ)mρ

ψ0(x − x0)ψ
†
0(y − x0)

−im

=

∫

dρd4x0dU

−iρ4
d
(nf =1)
0 (ρ)

[

ψ
(0)
0 (x−x0)ψ

(0) †
0 (y−x0)+ hψ

(0)
0 (x−x0)ψ

(1a) †
0 (y−x0)

+ hψ
(1a)
0 (x−x0)ψ

(0) †
0 (y−x0)+hψ

(0)
0 (x−x0)ψ

(1b) †
0 (y−x0)

+ hψ
(1b)
0 (x−x0)ψ

(0) †
0 (y−x0) + O(h2θ2)

]

,

where ψ
(0)
0 (x) is the zero mode of the ordinary Dirac operator in the ordinary instanton

field, and hψ
(1a)
0 (x) and hψ(1b) are the corrections of order hθµν to ψ

(0)
0 (x) that make, at

first order in hθµν , ψ0(x) = ψ
(0)
0 (x) + hψ

(1a)
0 (x) + hψ

(1b)
0 (x) the zero mode of the operator

K[a
(gsing)
µ ]. See appendix C, for definitions and further details. Since SU(3) is compact, and

following ref. [44], the averaging over SU(3) first-order-in-θ-deformed instanton orientations

is carried out by using the first two SU(3) integrals in eq. (E.2) of appendix E.

Let τa, a = 1, 2 and 3 denote the upper-left-hand corner embedding of the SU(2)

generators in the generators of SU(3) in the fundamental representation. We define τ±
µ =

(~τ ,∓i), τµν = 1
4i(τ

−
µ τ+

ν − τ−
µ τ+

ν ). Then, taking into account the definitions in eqs. (C.11),

(C.12) and (C.13) of appendix C, and using the conventions in appendix E, one obtains

the following expressions:

ψ
(0)
0 im(x)ψ

(0) †
0 jn (y) =

1

8
φ(x)φ(y)[(x/ − x/0)γµγν(y/ − x/0)PR ]ij [Uτ−

µ τ+
ν U †]mn,

ψ
(0)
0 im(x)ψ

(1a) †
0 jn (y) =

1

8
φ(x)(Γρσ(y)(y − x0)ρ(y − x0)α+Λασ(y))[(x/ − x/0)γµγν(y/ − x/0)PR]ij

×[Uτ−
µ τ+

ν τσαU †]mn,

ψ
(0)
0 im(x)ψ

(1b) †
0 jn (y) =

1

8
φ(x)χ∗

ασ(y)(y − x0)α[(x/ − x/0)γµγνγσPR ]ij [Uτ−
µ τ+

ν U †]mn,

from which one concludes that the effective Lagrangian L(nf=1)
eff (x) is given by the following

equations:
∫

d4x L(nf=1)
eff (x) =

∫

d4x L0(x) +

∫

d4x L2(x),

L0(x) =

∫

dρ

ρ5
d
(nf =1)
0 (ρ)mρ, L2(x) =

∫

dρ

ρ5
d
(nf =1)
0 (ρ)

∫

d4p

(2π)4
e−ipx Y2(p),
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Y2(p) = Y(0)
2 (p) + hY(1)

2 (p),

Y(0)
2 (p) =

i

3
ρQR(p)QL(p),

Y(1)
2 (p) =

i

3
ρ
[

SR(p)QL(p) −QR(p)SL(p)

−Rασ,R(p)γσαQL(p) −QR(p)γσαRασ,L(p)
]

, (4.7)

where

Q(p) ≡ φ′(u)uψ(p), Q(p) ≡ φ′(u)uψ(p),

Rασ(p) ≡ (−∂ραΓ′
ρσ(u) + Λ′

ασ(u))uψ(p), Rασ(p) ≡ (−∂ραΓ′
ρσ(u) + Λ′

ασ(u))uψ(p),

S(p) ≡ χ′
ασ(u)pα

u
γσp/ψ(p), S(p) ≡ χ′

ασ(u)pα

u
ψ(p)p/γσ,

with u =
√

p2. Derivatives with respect to u are denoted by the super-script ′. In eq. (E.3)

in appendix E, the functions φ(u), Γρσ(u), Λασ(u) and χασ(u) are given in terms of modified

Bessel functions. Y(0)
2 (p) is the ordinary result — see refs. [1, 2] — and Y(1)

2 (p) is the first

order noncommutative correction. Note that neither Y(0)
2 (p) nor Y(1)

2 (p) are invariant under

chiral transformations. This shows that the classical chiral symmetry of the massless theory

is broken in the quantum theory.

One expects that the previous effective Lagrangian gives right Physics in the low energy

regime: pρ ¿ 1, hθµνρ−2 ¿ 1. Using the low-momentum approximations in appendix E,

one obtains the following low-energy expressions for the two-field contribution to L(nf =1)
eff :

L2(p) = i

∫

dρ

ρ5
d
(nf =1)
0 (ρ)

4π2ρ3

3
ψR(p)

[

1 + hT
]

ψL(p).

Here, T = − 4
3p2ρ2 (θ − θ̃)µνγανpµpα, with γαν = 1

4i [γα, γν ]. Notice that the ordinary contri-

bution to L2(p) just above acts like a mass term. This interpretation is spoiled by the first

order corrections in hθµν .

4.2 Two light flavours

Now, in eq. (4.1), nf = 2 and mfρ ¿ 1, f = 1, 2. The effective Lagrangian, L(nf=2)
eff (x),

that yields the mf → 0 leading contributions to

〈vac, n = 1|vac, n = 0〉
〈vac, n = 0|vac, n = 0〉 ,

〈ψf (x)ψ†
f (y)〉(θdefinst)

〈vac, n = 0|vac, n = 0〉 and
〈∏f=1,2 ψf (xf )ψ†

f (yf )〉(θdefinst)

〈vac, n = 0|vac, n = 0〉 ,

reads
∫

d4x Lnf=2
eff (x) =

∫

d4x

∫

dρ

ρ5
d
(nf =2)
0 (ρ)

∏

f=1,2

[mfρ + Y2(x, ψf )]

+

∫

∏

j=1,2

dpj

(2π)4
dqj

(2π)4
δ





∑

j=1,2

pj −
∑

j=1,2

qj



 L4(p1, p2, q1, q2). (4.8)
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Here, Y2(x, ψf ) is obtained from the corresponding expression in eq. (4.7) by performing

the Fourier transform and then applying it to the fermion ψf with light mass mf , and

L4(p1, p2, q1, q2) is given by the following identities:

L4(p1, p2, q1, q2) = L
(0)
4 (p1, p2, q1, q2) + hL

(1)
4 (p1, p2, q1, q2),

L
(0)
4 (p1, p2, q1, q2) =

∫

dρ

ρ5
d
(nf =2)
0 (ρ)Y(0)

4 (p1, p2, q1, q2),

L
(1)
4 (p1, p2; q1, q2) =

∫

dρ

ρ5
d
(nf =1)
0 (ρ)Y(1)

4 (p1, p2, q1, q2),

Y(0)
4 (p1, p2, q1, q2) =

−ρ2

32

{

1

3
(Q1

R(p1)λ
aQ1

L(q1))(Q
2

R(p2)λ
aQ2

L(q2))

+ (Q1

R(p1)γµνλaQ1
L(q1))(Q

2

R(p2)γµνλaQ2
L(q2))

}

,

Y(1)
4 (p1, p2, q1, q2) =

−ρ2

32

{

1

3
(S1

R(p1)λ
aQ1

L(q1) −Q1

R(p1)λ
aS1

L(q1))(Q
2

R(p2)λ
aQ2

L(q2))

+ (S1

R(p1)γµνλaQ1
L(q1) −Q1

R(p1)γµνλaS1
L(q1))(Q

2

R(p2)γµνλaQ2
L(q2))

}

+
ρ2

32

{

1

3
(Q1

R(p1)γσαλaR1
ασ,L(q1)+R1

ασ,R(p1)γσαλaQ1
L(q1))(Q

2

R(p2)λ
aQ2

L(q2))

+ (Q1

R(p1)λ
aR1

ασ,L(q1) + R1

ασ,R(p1)λ
aQ1

L(q1))(Q
2

R(p2)γσαλaQ2
L(q2))

+ i
[

(Q1

R(p1)γανλaR1
ασ,L(q1) −R1

ασ,R(p1)γανλaQ1
L(q1))

× (Q2

R(p2)γνσλaQ2
L(q2)) − (α ↔ σ)

]

}

+ (1 ↔ 2). (4.9)

Qf (p), Qf
(p), Rf

ασ(p), Rf
ασ(p), Sf (p) and Sf

(p) in the previous equation are defined by

the following equations:

Qf (p) ≡ φ′(u)uψf (p), Qf
(p) ≡ φ′(u)uψf (p),

Rf
ασ(p) ≡ (−∂ραΓ′

ρσ(u) + Λ′
ασ(u))uψf (p), Rf

ασ(p) ≡ (−∂ραΓ′
ρσ(u) + Λ′

ασ(u))uψf (p),

Sf (p) ≡ χ′
ασ(u)pα

u
γσp/ψf (p), Sf

(p) ≡ χ′
ασ(u)pα

u
ψf (p)p/γσ,

where u =
√

p2 and the derivatives with respect to u are denoted by the super-script ′. The

functions φ(u), Λασ(u), Λασ(u) and χασ(u) are given in terms of modified Bessel functions

in eq. (E.3) of appendix E.

To obtain L(nf=2)
eff (x) in eq. (4.8), averages over the SU(3) are to be carried out with

the help of the first three equalities in eq. (E.2) of appendix E. Notice that if we set h = 0

in eq. (4.8) the ordinary ’t Hooft vertex for two light flavours [1, 2] is recovered.

As in the one-flavour case, we expect that L(nf =2)
eff (x) in eq. (4.8) gives the correct

Physics in the low momenta limit: piρ ¿ 1, qiρ ¿ 1, i = 1, 2. In this limit, L4(p1, p2, q1, q2)

boils down to

L4(p1, p2, q1, q2)
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≈ −
∫

dρ

ρ5
d
(nf =2)
0 (ρ)

[

3

32

(

4π2ρ3

3

)2
{

(ψ1 R(p1)λ
aψ1 L(q1))(ψ2 R(p2)λ

aψ2 L(q2))

+ 3(ψ1 R(p1)γµνλaψ1 L(q1))(ψ2 R(p2)γµνλaψ2 L(q2))
}

]

−h

∫

dρ

ρ5
d
(nf =2)
0 (ρ)

[

3

32

(

4π2ρ3

3

)2
{

(ψ1 R(p1)[O(p1) −O(q1)]λ
aψ1 L(q1))(ψ2 R(p2)λ

aψ2 L(q2))

+ 3(ψ1 R(p1)[O(p1)γµν − γµνO(q1)]λ
aψ1 L(q1))(ψ2 R(p2)γµνλaψ2 L(q2))

}

+(1 ↔ 2)
]

,

where

O(p) =
i

3ρ2p2
(θ − θ̃)µνp/pµγν and O(p) =

i

3ρ2p2
(θ − θ̃)µνγνp/pµ. (4.10)

To obtain eq. (4.10), we have used the approximations in eq. (E.4) of appendix E. Of

course, if the contributions linear in θµν are dropped one obtains the ordinary contributions

in ref. [43].

4.3 Three light flavours

We shall finally give the effective Lagrangian, L(nf =3)
eff (x), for the case of three light fermions:

the fermionic action is the action in eq. (4.1) for nf = 3.

Let us first introduce some notation. Y4(x, ψf , ψf ′) is defined by

Y4(x, ψf , ψf ′) =

∫ 2
∏

j=1

dpj

(2π)4
dqj

(2π)4
e−i(

P2
j=1 pi−

P2
j=1 qi)x

×
[

Y(0)
4 (p1, p2, q1, q2) + hY(1)

4 (p1, p2, q1, q2)
]

,

once ψ1 and ψ2 are replaced with ψf and ψf ′ , respectively, both in Y(0)
4 (p1, p2, q1, q2) and

Y(1)
4 (p1, p2, q1, q2). Y(0)

4 (p1, p2, q1, q2) and Y(1)
4 (p1, p2, q1, q2) are given in eq. (4.9). Y2(x, ψf )

shall denote the same quantity that occurred in eq. (4.8). Then, L(nf =3)
eff (x) is given by the

expressions that follow:
∫

d4x L(nf =3)
eff (x) =

∫

d4x

∫

dρ

ρ5
d
(nf =3)
0 (ρ)

∏

f=1,2,3

[mfρ + Y2(x, ψf )]

+

∫

d4x

∫

dρ

ρ5
d
(nf =3)
0 (ρ)

{

[m1ρ + Y2(x, ψ1)]Y4(x, ψ2, ψ3)

+ [m2ρ + Y2(x, ψ2)]Y4(x, ψ1, ψ3)

+ [m3ρ + Y2(x, ψ3)]Y4(x, ψ1, ψ2)
}

+

∫ 3
∏

j=1

dpj

(2π)4
dqj

(2π)4
δ

(

3
∑

j=1

pj −
3

∑

j=1

qj

)

L6(p1, p2, p3, q1, q2, q3),

where

L6(p1, p2, p3, q1, q2, q3) = L
(0)
6 (p1, p2, p3, q1, q2, q3) + hL

(1)
6 (p1, p2, p3, q1, q2, q3),
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L
(0)
6 (p1, p2, p3, q1, q2, q3) =

∫

dρ

ρ5
d
(nf =3)
0 (ρ)

[

−iρ3

64

{

dabc

[

− 1

15
(Q1

R(p1)λ
aQ1

L(q1))(Q
2

R(p2)λ
bQ2

L(q2))(Q
3

R(p3)λ
cQ3

L(q3))

+

(

1

5
(Q1

R(p1)γµνλaQ1
L(q1))(Q

2

R(p2)γµνλbQ2
L(q2))(Q

3

R(p3)λ
cQ3

L(q3)) + (3 ↔ 1) + (3 ↔ 2)

)]

−2

3
fabc(Q

1

R(p1)γαβλaQ1
L(q1))(Q

2

R(p2)γβδλ
bQ2

L(q2))(Q
3

R(p3)γδαλcQ3
L(q3))

} ]

,

L
(1)
6 (p1, p2, p3, q1, q2, q3) =

∫

dρ

ρ5
d
(nf =3)
0 (ρ)

[

−iρ3

64

{

dabc

[

− 1

15
(S1

R(p1)λ
aQ1

L(q1) −Q1

R(p1)λ
aS1

L(q1))(Q
2

R(p2)λ
bQ2

L(q2))(Q
3

R(p3)λ
cQ3

L(q3))

+
1

5

(

(S1

R(p1)γµνλaQ1
L(q1)−Q1

R(p1)γµνλaS1
L(q1))(Q

2

R(p2)γµνλbQ2
L(q2))(Q

3

R(p3)λ
cQ3

L(q3))

+(3 ↔ 2) + (S1

R(p1)λ
aQ1

L(q1)−Q1

R(p1)λ
aS1

L(q1))(Q
2

R(p2)γµνλbQ2
L(q2))(Q

3

R(p3)γµνλcQ3
L(q3))

)

]

−2

3
fabc(S

1

R(p1)γαβλaQ1
L(q1)−Q1

R(p1)γαβλaS1
L(q1))(Q

2

R(p2)γβδλ
bQ2

L(q2))(Q
3

R(p3)γδαλcQ3
L(q3))

}

− iρ3

128

{

2

5
dabc

[

1

3
(Q1

R(p1)γσαλaR1
ασ,L(q1) + R1

ασ,R(p1)γσαλaQ1
L(q1))(Q

2

R(p2)λ
bQ2

L(q2))(Q
3

R(p3)λ
cQ3

L(q3))

−
(

(Q1

R(p1)λ
aR1

ασ,L(q1) + R1

ασ,R(p1)λ
aQ1

L(q1))(Q
2

R(p2)λ
bQ2

L(q2))(Q
3

R(p3)γσαλcQ3
L(q3))

+(2 ↔ 3)
)

− (Q1

R(p1)γσαλaR1
ασ,L(q1) + R1

ασ,R(p1)γσαλaQ1
L(q1))(Q

2

R(p2)γµνλbQ2
L(q2)) ·

·(Q3

R(p3)γµνλcQ3
L(q3)) + i

(

(Q1

R(p1)γσνλaR1
ασ,L(q1) −R1

ασ,R(p1)γσνλaQ1
L(q1)) ·

·(Q2

R(p2)γναλbQ2
L(q2))(Q

3

R(p3)λ
cQ3

L(q3)) + (2 ↔ 3) − (α ↔ σ)
)

]

+
1

3
fabc

[

(

(Q1

R(p1)λ
aR1

ασ,L(q1) + R1

ασ,R(p1)λ
aQ1

L(q1))(Q
2

R(p2)γανλbQ2
L(q2))(Q

3

R(p3)γνσλcQ3
L(q3))

−(α ↔ σ)
)

− 2i
(

(Q1

R(p1)γµνλaR1
ασ,L(q1) −R1

ασ,R(p1)γµνλaQ1
L(q1))(Q

2

R(p2)γµνλbQ2
L(q2))

(Q3

R(p3)γσαλcQ3
L(q3)) − (2 ↔ 3)

)]}

+ (1 ↔ 2) + (1 ↔ 3)

]

.

To obtain the average over the SU(3) orientations leading to the previous equation, we

have employed the last integral in eq. (E.2) of appendix E; some values of the structure

constants of SU(3) were substituted. The low momenta — i.e., piρ ¿ 1, qiρ ¿ 1, i = 1, 2, 3

— approximation to L6(p1, p2, p3, q1, q2, q3) can be worked out with help of eq. (E.4) in

appendix E. We display the value of L6(p1, p2, p3, q1, q2, q3) in this low momenta limit in

the following equation:

L6(p1, p2, p3, q1, q2, q3) ≈
∫

dρ

ρ5
d
(nf =3)
0 (ρ)

(−i33

64

)(

4π2ρ3

3

)3 [

dabc

[

− 1

15
(ψ1 R(p1)λ

aψ1 L(q1))(ψ2 R(p2)λ
bψ2 L(q2))(ψ3 R(p3)λ

cψ3 L(q3))

+
1

5
((ψ1 R(p1)γµνλaψ1 L(q1))(ψ2 R(p2)γµνλbψ2 L(q2))(ψ3 R(p3)λ

cψ3 L(q3)) + (1 ↔ 3) + (2 ↔ 3))

]
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−2

3
fabc(ψ1 R(p1)γαβλaψ1 L(q1))(ψ2 R(p2)γβδλ

bψ2 L(q2))(ψ3 R(p3)γδαλcψ3 L(q3))

+h

{

dabc

[

− 1

15
(ψ1 R(p1)[O(p1) −O(q1)]λ

aψ1 L(q1))(ψ2 R(p2)λ
bψ2 L(q2))(ψ3 R(p3)λ

cψ3 L(q3))

+
1

5
((ψ1 R(p1)[O(p1)γµν − γµνO(q1)]λ

aψ1 L(q1))(ψ2 R(p2)γµνλbψ2 L(q2))(ψ3 R(p3)λ
cψ3 L(q3))

+(2 ↔ 3)

+(ψ1 R(p1)[O(p1) −O(q1)]λ
aψ1 L(q1))(ψ2 R(p2)γµνλbψ2 L(q2))(ψ3 R(p3)γµνλcψ3 L(q3)))

]

− 2

3

fabc(ψ1 R(p1)[O(p1)γαβ − γαβO(q1)]λ
aψ1 L(q1))(ψ2 R(p2)γβδλ

bψ2 L(q2))(ψ3 R(p3)γδαλcψ3 L(q3))

+(1 ↔ 2) + (1 ↔ 3)
}

]

.

O(p) and O(p) are defined in eq. (4.10).

5. Summary and outlook

In the main body of this paper, we have obtained the following results for noncommu-

tative SU(3) gauge theories with one, two and three light Dirac fermionic flavours, when

(Euclidean) time is commutative:

i. There are no solutions at any order in the formal power expansion in hθµν to the

noncommutative (anti-)self-duality equations. This result holds for SU(N) as well.

ii. At first order in hθµν , ordinary instantons can be given a θµν-dependent piece so that

the resulting field configuration satisfies the noncommutative Yang-Mills equations.

This field configuration — that we have called first-order-in-θ-deformed instanton —

has instanton number equal to one, and interpolates, along Euclidean time, between

vacua that differ in one unit of the winding number. We have also computed the most

general first-order-in-θ-deformed instanton.

iii. We have shown that in the first-order-in-θ-deformed instanton transition a coupling

between light left handed and right handed fermions is produced, thus showing that

the classical U(1)A symmetry of the massless theory is broken at the quantum level.

We have computed the ’t Hooft vertices that describe this coupling and seen that they

receive contributions that are linear in hθµν , these contributions being nonlocal even

in the low momenta limit.

In the appendices — see appendices A, B, and C, respectively —, we have further

obtained that

i. the self-duality equations for noncommutative SU(N) Yang-Mills theory have solutions

that are formal power series in hθµν if, and only if, θµν is self-dual. These solutions

are the ordinary instantons and multi-instantons. Analogously, the noncommutative

anti-self-duality equations for SU(N) have solutions that are formal power series in

hθµν if, and only if, θµν is anti-self-dual. The solutions in question are the ordinary

anti-instantons and anti-multi-instantons,
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ii. that all the noncommutative classical vacua of the noncommutative SU(N) Yang-Mills

theory that are formal power series in hθµν are given by the Seiberg-Witten transform

of some ordinary vacua ig(~x)∂ig(~x)†, where g(~x) is an ordinary gauge transformation,

and

iii. that the corrections to the zero mode of the θ-deformed Dirac operator can be worked

out explicitly — this we have done — at first order in hθµν for an arbitrary first-order-

in-θ-deformed instanton.

The analysis and computations carried out in this paper should be extended at least in

two directions. On the one hand, it would be very interesting to see whether, for commu-

tative time, there are topologically nontrivial solutions to the noncommutative Euclidean

classical equations of motion that are not formal power series in hθµν . This is a highly

nontrivial issue since the action of the theory has been defined so far as a formal power

series in hθµν . Some kind of re-summation of the power series expansion would thus be

needed, or, perhaps one should define the Seiberg-Witten map by expanding it in terms of a

different object [20]. On the other hand, it will be interesting to work out the second order

in hθµν corrections to the instanton density and ’t Hooft vertices that we have obtained.

This is quite an involved computation since it will demand the use of the constrained in-

stanton method [48, 49] or the valley method [50 – 52] to carry it out. Indeed, as we show

in appendix D, there are no topologically nontrivial field configurations that are formal

power series in hθµν and leave the noncommutative SU(N) Yang-Mills action stationary at

second order in hθµν . Actually, at second order in hθµν , the size, ρ, of the first-order-in-θ-

deformed instanton does not yield a zero mode of the quantum bosonic kinetic term in a

background that differs from our first-order-in-θ-deformed instanton by a term quadratic

in hθµν . Indeed, as can be shown by substituting the r.h.s. of eq. (3.14) in the r.h.s. of

eq. (2.10), the noncommutative action acquires a dependence on ρ of the type ρ−4:

SNCYM =
8π2

g2
+

8h2 π2

7g2ρ4
(θµν − θ̃µν)2 + O(h3θ3).

Notice that if we add to our first-order-in-θ-deformed instanton in eq. (3.14) an arbitrary

piece that is quadratic in hθµν , the previous value of SNCYM gets no correction at second

order in hθµν . Now, ρ gives rise to a quasi-zero mode in the sense of ref. [50], so that the

technique developed in the latter reference can be used to compute higher order corrections

in hθµν .
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A. Perturbative solutions to the (anti-)self-duality equations

In this appendix we shall consider an arbitrary θµν and seek for topologically non-trivial

solutions, aµ, to the noncommutative (anti-)self-duality equation — eq. (2.9) — that are

given by the formal power series in hθµν in eq. (2.11). Throughout this appendix the

noncommutative gauge field and field strength will be defined in terms of the ordinary

fields by means of the standard Seiberg-Witten map — see eqs. (2.1) and (2.3). We shall

show that for non-vanishing instanton number the solutions we seek for exist if, and only if,

θµν is (anti-)self-dual and, further, that these solutions are the ordinary (anti-)instantons

and (anti-)multi-instantons. In this appendix ṽµν shall denote the dual of a given tensor

vµν : ṽµν = 1
2εµνρσvρσ.

The expansion of aµ[h] in eq. (2.11) leads to the following expansion of its field strength:

fµν [h] = f (0)
µν +

∞
∑

l=1

hlf (l)
µν , (A.1)

where f
(l)
µν is a homogeneous polynomial in θµν of degree l. Substituting in eq. (2.3), both

the previous result and eq. (2.11), one obtains the following expansion of Fµν [aσ[h]] in

powers of hθµν :

Fµν [aσ[h]] = f (0)
µν +

∞
∑

l=1

hlf (l)
µν +

∞
∑

l=1,k=0

hl+kF (l,k)
µν , (A.2)

where F
(l,k)
µν is given by

F (l,k)
µν =

1

l!k!

dk

dtk
dl−1

dl−1h

◦
Fµν [aσ[t]]

∣

∣

∣

h=t=0
. (A.3)

aσ[t] is obtained from aσ[h] in eq. (2.11) by replacing h with t.
◦
Fµν [aσ] is equal to d

dhFµν [aσ]

as defined in eq. (2.4).

We shall show below that Fµν [aσ[h]] as defined above — see the previous equations —

is self-dual with non-vanishing Pontrjagin number if, and only if, both θµν and fµν [h] in

eq. (A.1) are self-dual. We shall carry out this proof by induction. At order h0 and h, the

self-duality equation for Fµν [aσ[h]] in eq. (A.2) is equivalent to

f (0)
µν = f̃ (0)

µν (A.4)

and

f (1)
µν + F (1,0)

µν = f̃ (1)
µν + F̃ (1,0)

µν , (A.5)

respectively. Since we shall look for solutions with a non-zero Pontrjagin number, we must

demand that f
(0)
µν does not vanish — see eq. (2.8) — and recall that f

(1)
µν does not depend

on h. Now, working out the trace over the SU(N) generators on both sides of eq. (A.5)

and using eq. (A.4), one obtains the following equation:

∑

a

1

2

[

(f
(0) a
12 )2 + (f

(0) a
13 )2 + (f

(0) a
23 )2

]

(θ − θ̃)µν = 0, (A.6)
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where “a” is the colour index of the field strength. Now, for a non-zero f
(0)
µν , this equation

holds if, and only if, θµν is self-dual. For a self-dual θµν and a self-dual f
(0)
µν , eq. (A.5) boils

down to

f (1)
µν = f̃ (1)

µν . (A.7)

To show that if θµν is self-dual, the self-duality equation for Fµν [aσ[h]] in eq. (A.2)

is equivalent to the self-duality equation for fµν in eq. (A.1), we shall prove first — by

induction — the following statement: if θµν , f
(0)
µν ,. . . ,f

(k−1)
µν are self-dual, then, so are

F (m,0),. . . ,F (m,k−1) for all m ≥ 1.

From eqs. (A.3) and (2.4), obtains that

F (1,l)
µν =

∑

m+n=l

(

1

2
θκλ{f (m)

µκ , f
(n)
νλ } − 1

4
θκλ{a(m)

κ , [(∂λ + Dλ)fµν ]
(n)}

)

.

For l ≤ k − 1, the previous expression involves f
(m)
µν , m ≤ k − 1, which are self-dual by

hypothesis; this clearly makes the second term in the previous expression self-dual in µ, ν.

The first term is also self-dual in µ, ν as a consequence of the self-duality of θµν , the

self-duality of f
(m)
µν , m ≤ k − 1, and the property

εµναβεγδλβ = δµγδνδδαλ − (λ ↔ δ) + δµδδνλδαγ − (λ ↔ γ) + δµλδνγδαδ − (γ ↔ δ). (A.8)

This proves the previous statement for m = 1. We shall assume in the sequel that the

statement holds for m ≤ n − 1. Now, eqs. (A.3) and (2.4) lead to

F
(n,j)
µν =
1

n!j!
dn−1

dhn−1
dj

dtj

(

1
2θκλ{Fµκ[aσ[t]], Fνλ[aσ[t]]}? − 1

4θκλ{Aκ[aσ [t]], (∂l + Dl)Fµν [aσ[t]]}?

)∣

∣

h=t=0
.

(A.9)

Taking into account the degrees of the derivatives in the previous expression, one readily

realizes that the F
(i,l)
µν ’s that occur on the r.h.s. of this equation have i ≤ n − 1, l ≤ j.

These F
(i,j)
µν ’s are, by hypothesis, self-dual if j ≤ k−1. One thus concludes that the second

term on the r.h.s of eq. (A.9) is self-dual in µ, ν. Eq. (A.8) and the fact that θµν and F
(i,l)
µν ,

i < n, l < k are self-dual imply that the first term on the r.h.s. of eq. (A.9) is also self-dual.

This concludes the proof of the statement made at the beginning of the paragraph starting

right below eq. (A.7).

We are now ready to go on with the proof that the only topologically non-trivial

solutions to eq. (2.9) that are formal power series in hθµν are the ordinary instantons and

multi-instantons. Using eq. (A.2), one readily concludes that the contribution of order hk

to the self-duality equation for Fµν [aσ[h]] reads

f (k)
µν +

k
∑

m=1

F (m,k−m)
µν = f̃ (k)

µν +
k

∑

m=1

F̃ (m,k−m)
µν . (A.10)

Let us assume that f
(0)
µν ,. . . , f

(k−1)
µν are self-dual, then, the statement made below eq. (A.7)

leads to the following result: F (m,k−m), 1 ≤ m ≤ k are self-dual. This result and eq. (A.10)

imply that whatever the value of k > 1

f (k)
µν = f̃ (k)

µν .
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We have thus shown — recall eqs. (A.4) and (A.7) — that Fµν [aσ [h]] in eq. (A.2) is self-dual

if, and only if, both θµν and f
(k)
µν , ∀k, are self-dual. Hence, the noncommutative self-duality

equation boils down to the ordinary self-duality equation, when one looks for solutions that

are formal power series in hθµν and have a non-vanishing Pontrjagin number.

One may readily adapt the procedure carried out above to analyze the existence of so-

lutions to the noncommutative anti-self-duality equation that are power series in hθµν . The

noncommutative anti-self-duality equation reads Fµν [aσ[h]] = −F̃µν [aσ[h]], with Fµν [aσ[h]]

defined as in eq. (A.1). It turns out that in the case at hand eq. (A.6) is replaced with

∑

a

1

2

[

(f
(0) a
12 )2 + (f

(0) a
13 )2 + (f

(0) a
23 )2

]

(θ + θ̃)µν = 0.

Hence, only when θµν is anti-self-dual does the previous equation hold for f
(0)
µν 6= 0. By

replacing self-dual objects with anti-self-dual tensors in the analysis above, one finally

reaches, with regard to the noncommutative anti-self-duality equation , the conclusion

stated at the beginning of this appendix.

B. Classical vacua of noncommutative SU(N) Yang-Mills theory

In this appendix we shall show that, in the temporal gauge in Minkowski space-time —

a0(t, ~x) = 0 — and for commutative time — θ0i = 0 —, any gauge field ai[h](t, ~x) that is a

formal power series in hθµν defines a classical vacuum of the noncommutative SU(N) Yang-

Mills theory if, and only if, there exists g(~x)ε SU(N) such that ai[h](t, ~x) = ig(~x)∂ig(~x)†.

Let us work out first the Hamiltonian of the theory defined by the action in eq. (2.5)

rotated to Minkowski space-time and the standard Seiberg-Witten map in eq. (2.1). It

can be shown that if θ0i = 0, and a0(t, ~x) = 0, no time derivative occurs in Ai and that A0

is linear in ∂0ai ≡ ȧi:

Ai = ai + Mi[ak, ∂kaj ]; A0 = Ll
0[ai, ∂iaj, ∂k]ȧl.

The field strength Fµν of this noncommutative gauge field reads:

Fij = fij + Rij[ak, ∂kam], Rij =
∑

l>0

hlR
(l)
ij ,

F0i = ȧi + Sc
ij[ak, ∂iaj , ∂k]ȧ

c
j , Sc

ij =
∑

l>0

hlS
c (l)
ij . (B.1)

Substituting this expression in eq. (2.5) rotated to Minkowski space-time, one obtains the

Lagrangian L[t, ~y] of the theory in the temporal gauge. This Lagrangian is quadratic in ȧi

so that the conjugate momenta of the field variable ai are defined as usual:

πa
i (t, ~x)=

δ

δȧa
i

∫

d4yL[t, ~y] =− 2

g2
Tr

{

F 0i(t, ~x)T a+

∫

d4y Sij
a[a(y), ∂ya, ∂y]δ3(~x−~y)F 0j(t, ~y)

}

,

∫

d4xπa
i (t, ~x)ȧa

i (t, ~x) = − 2

g2
Tr

∫

d4y F0jF
0j(t, ~y).
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We then define the hamiltonian, H, of the theory as follows

H =

∫

d4xπa
i (t, ~x)ȧa

i (t, ~x) −
∫

d4xL(t, ~x) =
1

g2

∫

d4x Tr
(

F0iF0i +
∑

i<j

FijFij

)

. (B.2)

Notice that H is gauge invariant — recall that θ0i = 0 — and that it is equal

to
∫

d3~x Tr T 00(t, ~x), where T 00(t, ~x) is 00 component of the gauge covariant energy-

momentum tensor — see [42] for further discussion —: T µν = − 1
g2 Tr

(

Fµα ? F ν
α + F να ?

Fµ
α − 1

2ηµνFαβ ? Fαβ

)

.

The classical vacua of the theory are defined by those ai[t, ~x] that minimize the hamil-

tonian given in eq. (B.2). Since the fields Fµν are self-adjoint, H is positive-definite. Hence,

the vacuum configurations are those which verify

F0i(t, ~x) = 0, Fij(t, ~x) = 0.

Let us assume that ai and fµν are given by the expansions in non-negative powers of

hθµν in eqs. (2.11) and (A.1). Then, eq. (B.1) leads the following expansions:

F0i = ȧ
(0)
i +

∑

l>0

hlȧ
(l)
i +

∑

l>0

∑

s≥0

∑

t≥0

hl+s+tS
c (l,s)
ij ȧ

c (t)
i

= ȧ
(0)
i +

∑

l>0

hl

(

ȧ
(l)
i +

l
∑

s=1

l−s
∑

t=0

S
c (s,t)
ij ȧ

c (l−s−t)
i

)

,

S
c (l,k)
ij =

1

k!

dk

dhk
S

c (l)
ij [a(0) + hla(l)]|h=0.

Hence, F0i = 0 is equivalent to the following set of equalities:

ȧ
(0)
i = 0,

ȧ
(l)
i +

l
∑

s=1

l−s
∑

t=0

S
c (s,t)
ij ȧ

c (l−s−t)
i = 0, l ≥ 1.

It is easy to show by induction that the solution to the previous collection of equations

reads:

ȧ
(l)
i = 0 ⇒ a

(l)
i = a

(l)
i (~x) l ≥ 0.

This leads to the conclusion that, in the temporal gauge, the classical vacua of our non-

commutative theory are given by time independent gauge fields, say, ai[h](~x), at least if

they can be formally expanded as in eq. (2.11).

Now, for a field configuration of the form of eq. (2.11) with field strength as in eq. (A.1),

Fij in (B.1) takes the form:

Fij = f
(0)
ij +

∑

l>0

hlf
(l)
ij +

∑

l>0,k≥0

hl+kF
(l,k)
ij = f

(0)
ij +

∑

l>0

hl

(

f
(l)
ij +

l
∑

k=1

F
(k,l−k)
ij

)

,

F
(l,k)
ij =

1

k!

dk

dhk
F

(l)
ij [a

(0)
i + hla

(l)
i ]|h=0, F

(l)
ij [ai] =

1

l!

dl−1

dhl−1

[

dFij

dh

]

[a
(0)
i + tla

(l)
i ]|h=0,t→h
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where,
dFµν

dh is given in eq. (2.4). We thus conclude that Fij = 0, is equivalent to the set of

equations

f
(0)
µν = 0,

f
(l)
ij +

∑l
k=1 F

(k,l−k)
ij = 0, l ≥ 1.

(B.3)

Now, it can be shown by induction that fµν = 0 implies F
(l)
µν [aρ] = 0, ∀l. Using this

result, one can prove that

F
(l,k)
ij = 0, if f

(n)
ij = 0, 0 ≤ n ≤ k.

Furnished with this result, one readily shows that the solution, ai(~x), to eq. (B.3) must

satisfy

f
(l)
ij = 0, l ≥ 0 ⇔ fij = 0,

i.e., ai(~x) is a pure gauge: ai(~x) = ig(~x)∂ig
†(~x).

C. Zero modes in the instanton background

In this appendix, we shall work out the zero modes — that we shall call bosonic zero

modes — of the operator Mab
µν [a

(gsing)
σ ] in eq. (4.4) and the zero mode — referred to as the

fermionic zero mode — of the operator K[a
(gsing)
µ ] defined in eq. (4.2).

C.1 Bosonic zero modes

As in the ordinary case — see ref. [46] —, the zero modes, δiaµ(x), of the operator

Mab
µν [a

(gsing)
σ ] in eq. (4.4) are given by

δiaµ =
∂a

(gsing)
µ (x, γj)

∂γi
− D[a(gsing)

σ ]µΩi.

{γi} denote the collective coordinates of a
(gsing)
µ and Ωi is a gauge transformation that

makes δiaµ satisfy the background field gauge condition D[a
(gsing)
σ ]µδiaµ = 0.

There are, of course, twelve zero modes — as many as the number of dimensions of

the moduli space of our first-order-in-θ-deformed instanton. Let U denote the rigid SU(3)

transformation that relates a
(gsing)
ν and a

(sing)
ν — see eq. (3.15) — and let aBPST

ν denote the

upper-left-hand corner embedding in SU(3) of the ordinary BPST instanton in the singular

gauge. Then, the zero modes we look for read

δµaν =
∂a

(gsing)
ν

∂x0µ
+ U

(

D[aBPST
σ ]νa

BPST
µ

)

U †,

δρaν =
∂a

(gsing)
ν

∂ρ
,

δaaµ = U

(

D[aBPST
σ ]µ

[

2r2

r2 + ρ2
T a

])

U †, a ∈ {1, 2, 3},

δαaµ = U

(

D[asing
σ ]µ

[

2

√

r2

r2+ρ2
Tα+

ih

4
√

3ρ2

(4ρ2r3 + 3r5)

(r2 + ρ2)5/2
(θ − θ̃)ρση̄aρσfaαcf8cdT d

])

U †
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α ∈ {4, 5, 6, 7}, a, c, d ∈ {1, 2, 3}.

We have used the following notation r ≡
√

(x − x0)2. T a, a = 1, 2, 3 are given by the

embedding the of generators of SU(2) into the upper-left-hand corner of he generators of

SU(3) in the fundamental representation. The generators T 4 and T 5, and T 6 and T 7,

form doublets under the action of the SU(2) subgroup generated by T a, a = 1, 2, 3. The

remaining generator T 8 is a singlet under the action of this SU(2) subgroup. The limit

hθµν → 0 of the zero modes above yields the ordinary zero modes computed in ref. [46].

The Jacobian, J(γ), of the collective coordinates is given by the following expression

J(γ) =
∏

i

1√
2π

√

det g(γk),

where the metric, g(γk), of the moduli space is given by:

gij(γk) =
2

g2
Tr

∫

d4x δiaν(x, γk)δjaν(x, γk).

Of course, there are no contributions to g(γk) nor J(γ) that are linear in hθµν : they are

proportional to hθµν gµν , gµν being the space-time metric. Hence,

J(γ) =
1

(2π)6

√

det g =
214π6ρ3

g12

[

128 ρ4 − 25h2 (θµν − θ̃µν)
2
]

=
214π6ρ7

g12
+ O(h2θ2).

C.2 Fermionic zero mode

It was shown in ref. [41] that, as a consequence of there being an U(1)A anomaly, the index

of the operator K[aµ] is one if aµ has Pontrjagin number equal to one. Hence, a least in

perturbation theory of hθµν , K[aµ] has a unique zero mode — which turns out to be right

handed — with unit norm. In this appendix we shall explicitly construct such zero mode

at first order in hθµν when aµ = a
(gsing)
µ . The unit norm zero mode of K[a

(gsing)
µ ] defined

in eq. (4.2) can be obtained from the unit norm zero mode of K[a
(sing)
µ ] by applying an

appropriate rigid SU(3) transformation. Let us then solve K[a
(sing)
µ ]ψ0 = 0 at fir st order

in hθµν . To do so, we shall expand ψ0 in positive powers of hθµν with coefficients that are

square integrable functions. Up to first order in hθµν , we have

ψ0 = ψ
(0)
0 + hψ

(1)
0 + O(h2θ2),

where ψ
(1)
0 is linear in θµν , and ψ

(0)
0 and ψ

(1)
0 satisfy the following equations:

D/ [aBPST
σ ]ψ

(0)
0 = 0, (C.1)

D/ [aBPST
σ ]ψ

(1)
0 = i γµbµψ

(0)
0 +

1

2
θαβγµfBPST

µα D[aBPST
σ ]βψ

(0)
0 − 1

8
θαβγµ(D[aBPST

σ ]µfBPST
αβ )ψ

(0)
0 .

fBPST
αβ denotes the field strength of aBPST

µ , both being in the singular gauge. Recall that

a
(sing)
µ = aBPST

µ + h bµ, with

aBPST
µ (x) =

ηaµν (x − x0)νρ2

(x − x0)2[(x − x0)2 + ρ2]
τa,
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bµ(x) =
2√
3

(θ − θ̃)µα(x − x0)α
(x − x0)

2 + 3ρ2

((x − x0)2 + ρ2)3
T 8.

The first equality in eq. (C.1) is the ordinary zero mode equation. Its solution is well

known [38]. It is the following spinor with positive chirality:

ψ
(0)
0,im =

ρ

πr(r2 + ρ2)3/2

[(

1 + γ5

2

)

(x/ − x/0)

]

ij

εjm. (C.2)

Note that i, j stand for spinor indices and m,n for colour indices.

Now, using the properties of the Gell-Mann matrices, one may show that the second

equality in eq. (C.1) implies that the third colour component of ψ
(1)
0 must vanish, if it

vanishes at infinity. Hence, the second equality in eq. (C.1) can be reduced to a equation

with colour indices belonging to SU(2) — in the fundamental representation — upon

replacing T 8 in bµ with 1
2
√

3
II. This we shall do.

The term on the far r.h.s of eq. (C.1) can be expressed as follows:

D/ BPST

(

−h

8
θαβfαβψ

(0)
0

)

.

Let ψ(1b) be defined by the following equations:

ψ
(1)
0 ≡ ψ

(1a)
0 + ψ

(1b)
0 ; ψ(1a) = −1

8
θαβfαβψ

(0)
0 . (C.3)

In terms of ψ
(1b)
0 , eq. (C.1) reads

D/ [aBPST
σ ]ψ

(1b)
0 = i γµbµψ

(0)
0 +

h

2
θαβγµfBPST

µα D[aBPST
σ ]βψ

(0)
0 ≡ R. (C.4)

To solve the previous equation we shall adapt to our case the technique developed in

ref. [47]. Let us decompose first ψ
(0)
0 , R and ψ

(1b)
0 into its positive, R, and negative, L,

chirality parts:

ψ
(0)
0 ≡

[

0

ψ
(0)
0,R

]

, R ≡
[

RL

0

]

, ψ1b
0 ≡

[

ψ1b
L

ψ1b
R

]

.

Then, when expressed in terms of the bi-spinors ψ′
L/R and R′

L, defined by the equations

(ψ′
L/R)im ≡ (ψ1b

L/R)jm(σ2)ji

(R′
L)im ≡ (RL)jm(σ2)ji, (C.5)

eq. (C.4) yields

(∂µ − iaBPST
µ )ψ′

Lαµ = 0

(∂µ − iaBPST
µ )ψ′

Rαµ = R′
L.

where αµ is defined in appendix E.
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It is well known [39] that there is no non-vanishing square integrable ψ′
L that is solution

to the first equation in eq. (C.6). To find ψ′
R that verifies the second equality in eq. (C.6),

let us first express ψ′
R, R′

L and aBPST
µ in terms of αµ, αµ — see appendix E —, σµ = (−→σ , i)

and σµν , respectively:

(ψ′
R)im = Mµ(αµ)mi; (R′

L)im = kµ(αµ)mi = k4 δim + ikµν (σµν)mi / kµν =
1

2
ηbµνkb,

aBPST
µ = −σµνϕν , ; ϕν = ∂ν log λ, ; λ = 1 +

ρ2

(x − x0)2
. (C.6)

By substituting the previous expressions in eq. (C.6) and then using the equalities in

eq. (E.1), one obtains the following equation:

iσµν (2∂νMµ − ϕνMµ − kµν) +

(

∂µMµ +
3

2
ϕνMν − k4

)

= 0. (C.7)

Taking traces leads to the conclusion that each summand in the previous equation must

vanish independently. The following definitions

Mµ ≡ λ1/2Nµ, Nµ ≡ ∂µ
φ

λ
+ ∂νXνµ, Xνµ anti self-dual, (C.8)

allow us to show that eq. (C.7) is equivalent to the following pair of equalities

¤Xµν = −2kµν

λ1/2
,

¤φ =
k4

λ5/2
− ∂µ(λ2∂νXνµ)

λ
, (C.9)

where

k4 = 0,

kρσ = mρσ − 1

2
ερσαβmαβ,

mρσ = −
√

2

2πr(r2+ρ2)9/2

[

λ3(θρσr2− 4∆xβ∆xρθσβ + 4∆xβ∆xσθρβ) +
1

6
λθρσr2(r2+ 3λ2)

]

,

∆xσ ≡ (x − x0)σ.

The general solution to eq. (C.9) is the sum of a particular solution and the general

solution of the corresponding homogeneous set of equations. A solution to the first equality

in question is

Xµν(x)part =
1

2π

∫

d4y
1

(x − y)2
kµν(y)
√

λ(y)
.

Recall that − 1
4π

1
(x−y)2 is a Green function of the Laplace operator in four dimensions. By

substituting k4 = 0 and the previous value of Xµν(x) in the r.h.s. of the second equation

in eq. (C.9), one shows that this r.h.s. vanishes. Hence, φpart(x) = 0 and Xµν(x)part above

constitute a particular solution to eq. (C.9).

Adding to this particular solution an appropriate solution to the corresponding homo-

geneous set of equations is equivalent to adding c(θ)ψ
(0)
0 (x) to the ψ

(1b)
0 — call it ψ

(1b)
0 part —
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constructed from φpart(x) = 0 and Xµν(x)part right above by using eqs. (C.8), (C.6), (C.5)

and (C.4). c(θ) is an arbitrary coefficient linear in θµν. Normalization to 1 of ψ0 renders

c(θ) equal to zero, for ψ
(0)
0 has unit norm and ψ

(1)
0 part = ψ

(1a)
0 + ψ

(1b)
0 part is orthogonal to

ψ
(0)
0 — (ψ

(0)
0 , ψ

(1)
0 part) is proportional to θµν gµν , gµν being the space-time metric. We thus

conclude that ψ
(1b)
0 in eq. (C.3) is equal to ψ

(1b)
0 part, so that we finally have

ψ
(1)
0,im = ψ

(1a)
0,im + ψ

(1b)
0,im

=
1

π ρ r (r2 + ρ2)7/2

[(

1 + γ5

2

)

γσ

]

ij

×
{

i

12
(x − x0)ρ

[

(θ − θ̃)ρσ(4r4 + 14r2ρ2) − 6ρ4(θ + θ̃)ρσ

]

εjm

+2 ρ4 θαγ(x − x0)σ

[

xαxν

r2
− 1

4
δαν

]

εjn τγν,mn

}

. (C.10)

τµν are the analogs of σµν in SU(2) colour space.

Finally, by acting with the appropriate SU(3) transformation, U , on ψ
(0)
0 and ψ

(1)
0 in

eqs. (C.2) and (C.10), one obtains the unit norm zero mode of K[a
(gsing)
µ ]. This zero mode

reads

ψ0 ≡ ψ0 + ψ1a + ψ1b, (C.11)

where, writing these right handed spinors in two-component notation, we have:

ψ0
im = φ(x) (x − x0)µ(αµ)ijεjnUmn,

ψ1a
im = h [Γαγ(x) (x − x0)α(x − x0)ν + Λνγ(x)] (x − x0)µ(αµ)ijεjo(τγν)noUmn,

ψ1b
im = hχασ(x) (x − x0)α(ασ)ijεjnUmn. (C.12)

The functions φ(x), Γαγ(x), Λαγ(x) and χασ(x) are defined thus

φ(x) =
ρ

πr(r2 + ρ2)3/2
, Γαγ(x) =

2θαγρ3

πr3(r2 + ρ2)7/2
, Λαγ(x) = − θαγρ3

2πr(r2 + ρ2)7/2
,

χασ(x) =
i

12πρr(r2 + ρ2)7/2

[

(θ − θ̃)ασ(4r4 + 14r2ρ2) − 6ρ4(θ + θ̃)ασ

]

. (C.13)

Recall that r =
√

(x − x0)2.

D. Topologically non-trivial field configurations at higher orders in θ
µν

In this appendix we shall show that, if θ4i = 0, i = 1, 2, 3, no topologically nontrivial

field configurations can be found that a) are formal power series in hθµν and b) at second

order in hθµν solve the equations of motion of noncommutative SU(3) Yang-Mills theory.

To show it, we shall use the technique devised in ref. [53]. Thus, we shall consider the

behaviour of action in eq. (2.5) under the following infinitesimal changes of scale:

a′µ = λaµ(λx), λ = 1 + δλ, (D.1)
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where aµ satisfies the equations of motion. The action can be written as:

SNCYM =

∞
∑

n=0

hnS(n) =

∞
∑

n=0

hn

∫

d4xL(n)[a, ∂], (D.2)

where L(n) is the term of the lagrangian of order hn, which, due to the fact that L(n)

contains n powers of θµν , is a polynomial of mass degree 4 + 2n in aµ and ∂µ. Hence,

∫

d4xL(n)[λa(λx), ∂x] = λ−4

∫

d4yL(n)[λa(y), λ∂y ] = λ2n

∫

d4yL[a(y), ∂y ].

Thus, under the change in eq. (D.1),S(n)[a] in eq. (D.2) changes as follows:

S(n)′ [a′] = λ2nS(n)[a].

Since we are assuming that the original field configuration aµ in eq. (D.1) is a solution to

the equations of motion, the following equivalent equations hold:

S[a] = S[λa(λx)] + O(δλ2) ⇔ δλ

∞
∑

n=0

2n hnS(n)[a] = O(δλ2) ∀λ ⇔
∞
∑

n=1

2n hn S(n)[a] = 0.

(D.3)

Now, let our solution to the equations of motion, aµ, be given by the following power

series: aµ =
∑∞

n=0 hna
(n)
µ . By substituting this power series in S(n) in eq. (D.2), one

obtains S(n)[a] =
∑∞

k=0 S(n,k)[a], S(n,m) = 1
m!

dm

dhm S(n)[aµ]|h=0. Combining this result with

the equality on the far right of eq. (D.3), one ends up with

0 =

∞
∑

k=1

hk

(

k−1
∑

m=0

(k − m)S(k−m,m)

)

⇔ 0 =

k−1
∑

m=0

(k − m)S(k−m,m) = 0,∀k ≥ 1.

For the action, SNCYM, to be stationary up to order hl, the previous identities have to be

verified for k ≤ l. In our case, we want the action to be stationary at order h2, so that we

should check if the following equalities hold:

S1,0 = 0, 2S2,0 + S1,1 = 0. (D.4)

From eq. (2.5) and eq. (2.8), one concludes that SNCYM for a field configuration with a well

defined topological charge n reads:

SNCYM =
1

2g2
Tr

∫

d4x

[

fµν f̃µν +
1

2
(Fµν − F̃µν)2

]

=
8π2n

g2
+

1

4g2
Tr

∫

d4x (Fµν − F̃µν)2.

(D.5)

Fµν is given by the Seiberg-Witten map as power series: Fµν [aρ] = fµν +
∑

l>0 hlF (l).

When evaluating these terms for the solution aµ =
∑∞

n=0 hna
(n)
µ we get again F

(n)
µν [aρ] =

∑∞
k=0 F

(n,k)
µν [aρ], F

(n,m)
µν [aρ] = 1

m!
dm

dhm F
(n)
µν [aρ]|h=0 and fµν = f

(0)
µν +

∑∞
k=1 hk f

(k)
µν . Hence,

S(1,0), S(1,1) and S(2,0) in eqs. (D.2) and (D.4) are given by

S(1,0) =
1

2g2
Tr

∫

d4x (f (0)
µν − f̃ (0)

µν )(F (1,0)
µν − F̃ (1,0)

µν ),
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S(1,1) =
1

2g2
Tr

∫

d4x
[

(f (1)
µν − f̃ (1)

µν )(F (1,0)
µν − F̃ (1,0)

µν ) + (f (0)
µν − f̃ (0)

µν )(F (1,1)
µν − F̃ (1,1)

µν )
]

,

S(2,0) =
1

2g2
Tr

∫

d4x (f (0)
µν − f̃ (0)

µν )(F (2,0)
µν − F̃ (2,0)

µν ) +
1

4g2
Tr

∫

d4x (F (1,0)
µν − F̃ (1,0)

µν )2.

In section 2, we saw that the most general solution to the equations of motion at order

h is given by

aµ = U

(

aBPST
µ + hb8

µT 8 + h
7

∑

a=1

ba
µT a

)

U †, (D.6)

where b8
µ is given in eq. (3.14), h

∑7
a=1 ba

µT a is any linear combination — with coefficients

linear in hθµν — of the ordinary bosonic zero modes [46] — i.e., the solutions to eq. (3.11)

— and U is a rigid SU(3) transformation. For a field configuration of this type, we have

S(1,0) = 0, for fBPST
µν = f̃BPST

µν . The first condition in eq. (D.4) is thus automatically satisfied.

Notice that eq. (D.5) tell us that any contribution of order h2θ2 to the classical solution

in eq. (D.6) yields a contribution of order h3θ3 to the action SNCYM. We will show next

that the second condition in eq. (D.4) is violated by the solution in eq. (D.6), so that it

is impossible to find a field configuration with non-zero topological charge that makes the

action stationary up to order h2θ2. First, F (1,1) and F (2,0) do not contribute neither to

S(1,1) nor S(2,0). Now, taking a closer look at the structure constants of SU(3), one sees

that the contribution to S(1,1) of h
∑7

a=1 ba
µT a is zero:

S(1,1) =
1

2g2
Tr

∫

d4x (f (1),8
µν T 8 − f̃ (1),8

µν T 8)(F (1,0)
µν − F̃ (1,0)

µν ), f (1),8
µν = hU(∂µb8

ν − ∂νb8
µ)U †.

By evaluating S(1,1) and S(2,0) for the field configuration in eq. (D.6), one obtains

S(1,1)[aµ] = − 8π2

7g2ρ4
(θµν − θ̃µν)2

S(2,0)[aµ] =
12π2

7g2ρ4
(θµν − θ̃µν)2

2S(2,0) + S(1,1) =
16π2

7g2ρ4
(θµν − θ̃µν)

2,

so that eq. (D.4) is violated and, furthermore, this happens independently of the arbitrary

part of the solution in eq. (D.6). Hence, the only way to make 2S(2,0) + S(1,1) zero is by

taking ρ to infinity, which would turn our solution into the trivial one.

This conclusion still holds for the most general Seiberg-Witten map at order h, given

by eq. (2.15). It turns out that the expression for S(1) obtained with this map is the

same as the one derived with the standard map for arbitrary aµ tending to zero at infinity.

Therefore, the field configuration in eq. (D.6) is the most general classical solution at order

hθµν with unit topological charge for an arbitrary Seiberg-Witten map. When checking

whether the conditions in eq. (D.4) hold, the values of S(1,0) and S(1,1) are unchanged

since so is S(1). It can also be seen that, for field configurations that are θ dependent

deformations of the ordinary instanton, the value of S(2,0) is the same for all the Seiberg-

Witten maps. Therefore the conditions in eq. (D.4) are always violated, and this concludes

the proof of the statement made at the beginning of this section.
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E. Some conventions and formulae

In this appendix sundry formulae are collected.

E.1 Spinor matrices

σµ = (−→σ , i), σµ = (−−→σ , i), αµ = (−i−→σ , II) = −iσ−
µ , αµ = (i−→σ , II) = iσ+

µ ,

σµν =
1

4i
(αµαν − αναµ) =

1

2
ηaµνσa; σµν =

1

4i
(αµαν − αναµ) =

1

2
ηaµνσa,

αµαν = gµν + 2iσµν , (E.1)

and analogously for the SU(2) generators τa, a = 1, 2, 3.

ε12 = +1, εimεjn =
1

8
(σ−

µ σ+
ν )ij(τ

−
µ τ+

ν )mn.

γµ =

[

αµ

αµ

]

, γ5 = −γ1γ2γ3γ4 =

[

−II

II

]

, γµν = 1
4i [γµ, γν ]

E.2 SU(3) averages

∫

dU = 1,
∫

dUUiaU
†
jb =

1

3
δjaδib,

∫

dUUi1a1U
†
j1b1Ui2a2U

†
j2b2 =

1

32
δj1a1δi1b1δj2a2δi2b2

+
1

4 · 8 (λa)j1a1(λ
a)j2a2(λ

b)i1b1(λ
b)i2b2 ,

∫

dUUi1a1U
†
j1b1Ui2a2U

†
j2b2Ui3a3U

†
j3b3 =

1

33
δj1a1δi1b1δj2a2δi2b2δj3a3δi3a3

+
1

4 · 3 · 8
[

(λa)j1a1(λ
a)j2a2(λ

b)i1b1(λ
b)i2b2δj3a3δi3a3 + (3 ↔ 1) + (3 ↔ 2)

]

+
3

8 · 5 · 8 dijkdabc(λ
i)j1a1(λ

j)j2a2(λ
k)j3a3(λ

a)i1b1(λ
b)i2b2(λ

c)i3b3

+
1

8 · 3 · 8 fijkfabc(λ
i)j1a1(λ

j)j2a2(λ
k)j3a3(λ

a)i1b1(λ
b)i2b2(λ

c)i3b3. (E.2)

E.3 Fourier transform and low momenta approximations

Fourier transform is defined as follows:

f(p) =

∫

d4x eipxf(x), f(x) =

∫

d4p

(2π)4
e−ipxf(p).

In terms of the modified Bessel functions Iν(z) and Kν(z), the Fourier transform of

the functions φ(x), Γ(x), Λ(x), χ(x) introduced in eq. (C.13) read:

φ(p) = 2πρ
[

I0

(uρ

2

)

K0

(uρ

2

)

− I1

(uρ

2

)

K1

(uρ

2

)]

,
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Γασ(p) =
32πρ

15
θασ

(

d

dρ2

)2

I1

(uρ

2

)

K1

(uρ

2

)

,

Λασ(p) = −16πρ3

15u
θασ

d

du

(

d

dρ2

)3

I0

(uρ

2

)

K0

(uρ

2

)

,

χασ(p) =
8iπ

45uρ

{

(θ − θ̃)ασ



4

[

(

d

dρ2

)2

+
3

u

d

du

]2

− 14ρ2

[

(

d

dρ2

)2

+
3

u

d

du

]





− 6(θ + θ̃)ασ

}

×

d

du

(

d

dρ2

)3

I0

(uρ

2

)

K0

(uρ

2

)

. (E.3)

The variable u stands for
√

p2. Let
′

denote derivative with respect to u. We have the

following low momenta — uρ ¿ 1 — expansions:

φ′(u) ∼ −2πρ

u
+ O(u),

Γ′′′
ασ(u) ∼ O(u), Γ′′(u) ∼ O(u0), Γ′(u) ∼ O(u),

Λ′
ασ(u) ∼ O(u),

χ′
ασ(u) ∼ − 2iπ

3ρu
(θ − θ̃)ασ + O(u). (E.4)
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